Copied to
clipboard

?

G = C4217D14order 448 = 26·7

17th semidirect product of C42 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C4217D14, C14.212+ (1+4), C4⋊C450D14, (C4×D4)⋊22D7, (D4×C28)⋊24C2, C22⋊D287C2, C287D411C2, (C4×C28)⋊28C22, C22⋊C449D14, (C22×C4)⋊14D14, C23⋊D1421C2, D14⋊D410C2, D14⋊C431C22, D14.5D48C2, (C2×D4).221D14, C4.D2828C2, C422D710C2, C4⋊Dic710C22, Dic7⋊D427C2, (C2×C14).104C24, (C2×C28).162C23, Dic7⋊C433C22, (C22×C28)⋊11C22, C22⋊Dic149C2, Dic7.D49C2, C72(C22.32C24), (C2×Dic14)⋊7C22, (C4×Dic7)⋊53C22, (C2×D28).27C22, C22.6(C4○D28), C2.22(D46D14), C2.17(D48D14), C23.D710C22, (D4×C14).308C22, C23.23D142C2, (C2×Dic7).45C23, (C22×D7).38C23, (C23×D7).42C22, C23.101(C22×D7), C22.129(C23×D7), (C22×C14).174C23, (C22×Dic7).99C22, C4⋊C4⋊D78C2, (C4×C7⋊D4)⋊46C2, (C2×C4×D7)⋊49C22, (C2×D14⋊C4)⋊35C2, (C7×C4⋊C4)⋊62C22, C2.53(C2×C4○D28), C14.46(C2×C4○D4), (C2×C7⋊D4)⋊5C22, (C2×C14).17(C4○D4), (C7×C22⋊C4)⋊58C22, (C2×C4).162(C22×D7), SmallGroup(448,1013)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C4217D14
C1C7C14C2×C14C22×D7C23×D7C2×D14⋊C4 — C4217D14
C7C2×C14 — C4217D14

Subgroups: 1364 in 250 conjugacy classes, 95 normal (91 characteristic)
C1, C2 [×3], C2 [×6], C4 [×10], C22, C22 [×2], C22 [×18], C7, C2×C4 [×5], C2×C4 [×9], D4 [×9], Q8, C23 [×2], C23 [×7], D7 [×3], C14 [×3], C14 [×3], C42, C42, C22⋊C4 [×2], C22⋊C4 [×12], C4⋊C4, C4⋊C4 [×5], C22×C4 [×2], C22×C4 [×2], C2×D4, C2×D4 [×6], C2×Q8, C24, Dic7 [×5], C28 [×5], D14 [×13], C2×C14, C2×C14 [×2], C2×C14 [×5], C2×C22⋊C4, C4×D4, C4×D4, C22≀C2 [×2], C4⋊D4 [×3], C22⋊Q8, C22.D4 [×2], C4.4D4 [×2], C422C2 [×2], Dic14, C4×D7, D28 [×2], C2×Dic7 [×5], C2×Dic7, C7⋊D4 [×5], C2×C28 [×5], C2×C28 [×2], C7×D4 [×2], C22×D7 [×3], C22×D7 [×4], C22×C14 [×2], C22.32C24, C4×Dic7, Dic7⋊C4 [×4], C4⋊Dic7, D14⋊C4 [×10], C23.D7 [×2], C4×C28, C7×C22⋊C4 [×2], C7×C4⋊C4, C2×Dic14, C2×C4×D7, C2×D28 [×2], C22×Dic7, C2×C7⋊D4 [×4], C22×C28 [×2], D4×C14, C23×D7, C4.D28, C422D7, C22⋊Dic14, C22⋊D28, D14⋊D4, Dic7.D4, D14.5D4, C4⋊C4⋊D7, C2×D14⋊C4, C4×C7⋊D4, C23.23D14, C287D4, C23⋊D14, Dic7⋊D4, D4×C28, C4217D14

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D7, C4○D4 [×2], C24, D14 [×7], C2×C4○D4, 2+ (1+4) [×2], C22×D7 [×7], C22.32C24, C4○D28 [×2], C23×D7, C2×C4○D28, D46D14, D48D14, C4217D14

Generators and relations
 G = < a,b,c,d | a4=b4=c14=d2=1, ab=ba, cac-1=a-1, dad=a-1b2, bc=cb, dbd=a2b, dcd=c-1 >

Smallest permutation representation
On 112 points
Generators in S112
(1 16 44 32)(2 33 45 17)(3 18 46 34)(4 35 47 19)(5 20 48 36)(6 37 49 21)(7 22 50 38)(8 39 51 23)(9 24 52 40)(10 41 53 25)(11 26 54 42)(12 29 55 27)(13 28 56 30)(14 31 43 15)(57 98 102 72)(58 73 103 85)(59 86 104 74)(60 75 105 87)(61 88 106 76)(62 77 107 89)(63 90 108 78)(64 79 109 91)(65 92 110 80)(66 81 111 93)(67 94 112 82)(68 83 99 95)(69 96 100 84)(70 71 101 97)
(1 108 8 101)(2 109 9 102)(3 110 10 103)(4 111 11 104)(5 112 12 105)(6 99 13 106)(7 100 14 107)(15 77 38 96)(16 78 39 97)(17 79 40 98)(18 80 41 85)(19 81 42 86)(20 82 29 87)(21 83 30 88)(22 84 31 89)(23 71 32 90)(24 72 33 91)(25 73 34 92)(26 74 35 93)(27 75 36 94)(28 76 37 95)(43 62 50 69)(44 63 51 70)(45 64 52 57)(46 65 53 58)(47 66 54 59)(48 67 55 60)(49 68 56 61)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96 97 98)(99 100 101 102 103 104 105 106 107 108 109 110 111 112)
(1 14)(2 13)(3 12)(4 11)(5 10)(6 9)(7 8)(15 39)(16 38)(17 37)(18 36)(19 35)(20 34)(21 33)(22 32)(23 31)(24 30)(25 29)(26 42)(27 41)(28 40)(43 44)(45 56)(46 55)(47 54)(48 53)(49 52)(50 51)(57 99)(58 112)(59 111)(60 110)(61 109)(62 108)(63 107)(64 106)(65 105)(66 104)(67 103)(68 102)(69 101)(70 100)(71 77)(72 76)(73 75)(78 84)(79 83)(80 82)(85 87)(88 98)(89 97)(90 96)(91 95)(92 94)

G:=sub<Sym(112)| (1,16,44,32)(2,33,45,17)(3,18,46,34)(4,35,47,19)(5,20,48,36)(6,37,49,21)(7,22,50,38)(8,39,51,23)(9,24,52,40)(10,41,53,25)(11,26,54,42)(12,29,55,27)(13,28,56,30)(14,31,43,15)(57,98,102,72)(58,73,103,85)(59,86,104,74)(60,75,105,87)(61,88,106,76)(62,77,107,89)(63,90,108,78)(64,79,109,91)(65,92,110,80)(66,81,111,93)(67,94,112,82)(68,83,99,95)(69,96,100,84)(70,71,101,97), (1,108,8,101)(2,109,9,102)(3,110,10,103)(4,111,11,104)(5,112,12,105)(6,99,13,106)(7,100,14,107)(15,77,38,96)(16,78,39,97)(17,79,40,98)(18,80,41,85)(19,81,42,86)(20,82,29,87)(21,83,30,88)(22,84,31,89)(23,71,32,90)(24,72,33,91)(25,73,34,92)(26,74,35,93)(27,75,36,94)(28,76,37,95)(43,62,50,69)(44,63,51,70)(45,64,52,57)(46,65,53,58)(47,66,54,59)(48,67,55,60)(49,68,56,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,42)(27,41)(28,40)(43,44)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(57,99)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,77)(72,76)(73,75)(78,84)(79,83)(80,82)(85,87)(88,98)(89,97)(90,96)(91,95)(92,94)>;

G:=Group( (1,16,44,32)(2,33,45,17)(3,18,46,34)(4,35,47,19)(5,20,48,36)(6,37,49,21)(7,22,50,38)(8,39,51,23)(9,24,52,40)(10,41,53,25)(11,26,54,42)(12,29,55,27)(13,28,56,30)(14,31,43,15)(57,98,102,72)(58,73,103,85)(59,86,104,74)(60,75,105,87)(61,88,106,76)(62,77,107,89)(63,90,108,78)(64,79,109,91)(65,92,110,80)(66,81,111,93)(67,94,112,82)(68,83,99,95)(69,96,100,84)(70,71,101,97), (1,108,8,101)(2,109,9,102)(3,110,10,103)(4,111,11,104)(5,112,12,105)(6,99,13,106)(7,100,14,107)(15,77,38,96)(16,78,39,97)(17,79,40,98)(18,80,41,85)(19,81,42,86)(20,82,29,87)(21,83,30,88)(22,84,31,89)(23,71,32,90)(24,72,33,91)(25,73,34,92)(26,74,35,93)(27,75,36,94)(28,76,37,95)(43,62,50,69)(44,63,51,70)(45,64,52,57)(46,65,53,58)(47,66,54,59)(48,67,55,60)(49,68,56,61), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96,97,98)(99,100,101,102,103,104,105,106,107,108,109,110,111,112), (1,14)(2,13)(3,12)(4,11)(5,10)(6,9)(7,8)(15,39)(16,38)(17,37)(18,36)(19,35)(20,34)(21,33)(22,32)(23,31)(24,30)(25,29)(26,42)(27,41)(28,40)(43,44)(45,56)(46,55)(47,54)(48,53)(49,52)(50,51)(57,99)(58,112)(59,111)(60,110)(61,109)(62,108)(63,107)(64,106)(65,105)(66,104)(67,103)(68,102)(69,101)(70,100)(71,77)(72,76)(73,75)(78,84)(79,83)(80,82)(85,87)(88,98)(89,97)(90,96)(91,95)(92,94) );

G=PermutationGroup([(1,16,44,32),(2,33,45,17),(3,18,46,34),(4,35,47,19),(5,20,48,36),(6,37,49,21),(7,22,50,38),(8,39,51,23),(9,24,52,40),(10,41,53,25),(11,26,54,42),(12,29,55,27),(13,28,56,30),(14,31,43,15),(57,98,102,72),(58,73,103,85),(59,86,104,74),(60,75,105,87),(61,88,106,76),(62,77,107,89),(63,90,108,78),(64,79,109,91),(65,92,110,80),(66,81,111,93),(67,94,112,82),(68,83,99,95),(69,96,100,84),(70,71,101,97)], [(1,108,8,101),(2,109,9,102),(3,110,10,103),(4,111,11,104),(5,112,12,105),(6,99,13,106),(7,100,14,107),(15,77,38,96),(16,78,39,97),(17,79,40,98),(18,80,41,85),(19,81,42,86),(20,82,29,87),(21,83,30,88),(22,84,31,89),(23,71,32,90),(24,72,33,91),(25,73,34,92),(26,74,35,93),(27,75,36,94),(28,76,37,95),(43,62,50,69),(44,63,51,70),(45,64,52,57),(46,65,53,58),(47,66,54,59),(48,67,55,60),(49,68,56,61)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96,97,98),(99,100,101,102,103,104,105,106,107,108,109,110,111,112)], [(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,39),(16,38),(17,37),(18,36),(19,35),(20,34),(21,33),(22,32),(23,31),(24,30),(25,29),(26,42),(27,41),(28,40),(43,44),(45,56),(46,55),(47,54),(48,53),(49,52),(50,51),(57,99),(58,112),(59,111),(60,110),(61,109),(62,108),(63,107),(64,106),(65,105),(66,104),(67,103),(68,102),(69,101),(70,100),(71,77),(72,76),(73,75),(78,84),(79,83),(80,82),(85,87),(88,98),(89,97),(90,96),(91,95),(92,94)])

Matrix representation G ⊆ GL6(𝔽29)

11240000
24180000
0091604
0024202511
0024152413
00140165
,
1700000
0170000
0019600
00171000
0020086
002692321
,
100000
010000
00201900
0020600
0013261010
006121922
,
28130000
010000
00222200
0011700
007171919
00119710

G:=sub<GL(6,GF(29))| [11,24,0,0,0,0,24,18,0,0,0,0,0,0,9,24,24,14,0,0,16,20,15,0,0,0,0,25,24,16,0,0,4,11,13,5],[17,0,0,0,0,0,0,17,0,0,0,0,0,0,19,17,20,26,0,0,6,10,0,9,0,0,0,0,8,23,0,0,0,0,6,21],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,20,20,13,6,0,0,19,6,26,12,0,0,0,0,10,19,0,0,0,0,10,22],[28,0,0,0,0,0,13,1,0,0,0,0,0,0,22,11,7,1,0,0,22,7,17,19,0,0,0,0,19,7,0,0,0,0,19,10] >;

82 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I4A4B4C4D4E4F4G4H···4L7A7B7C14A···14I14J···14U28A···28L28M···28AJ
order122222222244444444···477714···1414···1428···2828···28
size1111224282828222244428···282222···24···42···24···4

82 irreducible representations

dim111111111111111122222222444
type++++++++++++++++++++++++
imageC1C2C2C2C2C2C2C2C2C2C2C2C2C2C2C2D7C4○D4D14D14D14D14D14C4○D282+ (1+4)D46D14D48D14
kernelC4217D14C4.D28C422D7C22⋊Dic14C22⋊D28D14⋊D4Dic7.D4D14.5D4C4⋊C4⋊D7C2×D14⋊C4C4×C7⋊D4C23.23D14C287D4C23⋊D14Dic7⋊D4D4×C28C4×D4C2×C14C42C22⋊C4C4⋊C4C22×C4C2×D4C22C14C2C2
# reps1111111111111111343636324266

In GAP, Magma, Sage, TeX

C_4^2\rtimes_{17}D_{14}
% in TeX

G:=Group("C4^2:17D14");
// GroupNames label

G:=SmallGroup(448,1013);
// by ID

G=gap.SmallGroup(448,1013);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-7,758,100,675,570,18822]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^14=d^2=1,a*b=b*a,c*a*c^-1=a^-1,d*a*d=a^-1*b^2,b*c=c*b,d*b*d=a^2*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽